Select the correct answer. which expression is equivalent to the given expression? assume the denominator does not equal zero. a. b. c. d.

Respuesta :

If the denominator does not equal 0, the equivalent expression of [tex]\frac{14x^4y^6}{7x^8y^2}[/tex] is [tex]\frac{2y^{4}}{x^{4}}[/tex][tex]\frac{x^{10} y^{14}}{729}[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex]\frac{14x^4y^6}{7x^8y^2}[/tex]

Divide 14 by 7

[tex]\frac{14x^4y^6}{7x^8y^2} = \frac{2x^4y^6}{x^8y^2}[/tex]

Apply the law of indices

[tex]\frac{14x^4y^6}{7x^8y^2} = \frac{2y^{6-2}}{x^{8-4}}[/tex]

Evaluate the differences in the exponents

[tex]\frac{14x^4y^6}{7x^8y^2} = \frac{2y^{4}}{x^{4}}[/tex]

Hence, the equivalent expression of [tex]\frac{14x^4y^6}{7x^8y^2}[/tex] is [tex]\frac{2y^{4}}{x^{4}}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832

#SPJ4