If the denominator does not equal 0, the equivalent expression of [tex]\frac{14x^4y^6}{7x^8y^2}[/tex] is [tex]\frac{2y^{4}}{x^{4}}[/tex][tex]\frac{x^{10} y^{14}}{729}[/tex]
The expression is given as:
[tex]\frac{14x^4y^6}{7x^8y^2}[/tex]
Divide 14 by 7
[tex]\frac{14x^4y^6}{7x^8y^2} = \frac{2x^4y^6}{x^8y^2}[/tex]
Apply the law of indices
[tex]\frac{14x^4y^6}{7x^8y^2} = \frac{2y^{6-2}}{x^{8-4}}[/tex]
Evaluate the differences in the exponents
[tex]\frac{14x^4y^6}{7x^8y^2} = \frac{2y^{4}}{x^{4}}[/tex]
Hence, the equivalent expression of [tex]\frac{14x^4y^6}{7x^8y^2}[/tex] is [tex]\frac{2y^{4}}{x^{4}}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
#SPJ4