find the numerical value of the log expression, please help!

Answer:
101
Step-by-step explanation:
[tex]\log a=-8\\\\10^{\log a}=10^{-8}\\\\a=10^{-8}[/tex]
[tex]\log b=-9\\\\10^{\log b}=10^{-9}\\\\b=10^{-9}[/tex]
[tex]\log c=-9\\\\10^{\log c}=10^{-9}\\\\c=10^{-9}[/tex]
[tex]\displaystyle \log\frac{a^2}{b^5c^8}=\log\frac{(10^{-8})^2}{(10^{-9})^5(10^{-9})^8}=\log\frac{10^{-16}}{(10^{-9})^{13}}=\log\frac{10^{-16}}{10^{-117}}=\log(10^{-16-(-117)})=\log(10^{101})=101[/tex]