I need help with this question.
![I need help with this question class=](https://us-static.z-dn.net/files/d72/d0271d31a67d42fb35b48fb2f5c5c62b.png)
Answer:
See below ~
Step-by-step explanation:
Let the bases be x and x + 6.
Substituting the known values into the formula :
The base lengths are :
Answer:
One base is [tex]\large \boxed{\sf 9}[/tex] inches for one of the bases and [tex]\large \boxed{\sf 15}[/tex] inches for the other base.
[tex]\large \boxed{\sf 24}=\sf(b_1+b_2)[/tex]. Use guess and check to find two numbers that add to [tex]\large \boxed{\sf 24}[/tex] with one number 6 more than the other to get
[tex]\large \boxed{\sf 9}[/tex] inches for one of the bases and [tex]\large \boxed{\sf 15}[/tex] inches for the other base.
Step-by-step explanation:
[tex]\textsf{Area of a trapezoid}= \sf \dfrac{1}{2}(b_1+b_2)h \quad \textsf{(where b are the bases and h is the height)}[/tex]
Given:
Substitute given values into the formula to find (b₁ + b₂) :
[tex]\implies \sf 48=\dfrac{1}{2}(b_1+b_2)4[/tex]
[tex]\implies \sf \dfrac{48}{4}=\dfrac{1}{2}(b_1+b_2)[/tex]
[tex]\implies \sf 12=\dfrac{1}{2}(b_1+b_2)[/tex]
[tex]\implies \sf 12 \cdot 2=(b_1+b_2)[/tex]
[tex]\implies \sf 24=(b_1+b_2)[/tex]
Therefore:
[tex]\large \boxed{\sf 24}=\sf(b_1+b_2)[/tex]
Let:
[tex]\implies \sf (b_1+b_2)=24[/tex]
[tex]\implies \sf x+x+6=24[/tex]
[tex]\implies \sf 2x+6=24[/tex]
[tex]\implies \sf 2x=18[/tex]
[tex]\implies \sf x=9[/tex]
[tex]\sf If\:b_1=9\:in,\:then\:b_2=9+6=15\:in[/tex]
Therefore,