Respuesta :
Answer:
x = 2, - 4
Step-by-step explanation:
The factors of 8 are:
1, 8
2, 4
You can combine 2 and 4 to create 2.
( x - 2 ) ( x + 4 ) = 0
0 can either be x - 2 or x + 4
Therefore, x = 2 or - 4
Hey there!
Use the quadratic formula to find the solution(s). x² + 2x - 8 = 0
- Answer :
x = -4 or x = 2 ✅
- Explanation :
Quadratic formula : ax² + bx + c = 0 where a ≠ 0
The number of real-number solutions (roots) is determined by the discriminant (b² - 4ac) :
- If b² - 4ac > 0 , There are 2 real-number solutions
- If b² - 4ac = 0 , There is 1 real-number solution.
- If b² - 4ac < 0 , There is no real-number solution.
The roots of the equation are determined by the following calculation:
[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
Here, we have :
- a = 1
- b = 2
- c = -8
1) Calculate the discriminant :
b² - 4ac ⇔ 2² - 4(1)(-8) ⇔ 4 - (-32) ⇔ 36
b² - 4ac = 36 > 0 ; The equation admits two real-number solutions
2) Calculate the roots of the equation:
▪️ (1)
[tex]x_1 = \frac{ - b - \sqrt{ {b}^{2} - 4ac} }{2a} \\ \\ x_1 = \frac{ - 2 - \sqrt{36} }{2(1) } \\ \\ x_1 = \frac{ - 2 - 6}{2} \\ \\ x_1 = \frac{ - 8}{2} \\ \\ \blue{\boxed{\red{x_1 = -4}}}[/tex]
▪️ (2)
[tex]x_2 = \frac{ - b + \sqrt{ {b}^{2} - 4ac } }{2a} \\ \\ x_2 = \frac{ - 2 + \sqrt{36} }{2(1)} \\ \\ x_2 = \frac{ - 2 + 6}{2} \\ \\ x_2 = \frac{4}{2} \\ \\ \red{\boxed{\blue{x_2 = 2}}}[/tex]
>> Therefore, your answers are x = -4 or x = 2.
Learn more about quadratic equations:
https://brainly.com/question/27638369