Answer:
15.9% (nearest tenth)
Step-by-step explanation:
[tex]X \sim \sf N(\mu, \sigma^2)[/tex]
Given:
[tex]X \sim \sf N(7.8, 0.3^2)[/tex]
Using a calculator:
[tex]\implies \textsf{P}(X < \sf 7.5)=0.1586552539=15.9\%\:(nearest\:tenth)[/tex]
Converting to z-value:
[tex]\textsf{If }\: X \sim\textsf{N}(\mu,\sigma^2)\:\textsf{ then }\: \dfrac{X-\mu}{\sigma}=Z, \quad \textsf{where }\: Z \sim \textsf{N}(0,1)[/tex]
[tex]\implies \textsf{P}(X < 7.5)=\textsf{P}\left(Z < \dfrac{7.5-7.8}{0.3}\right)=\textsf{P}(Z < -1)[/tex]
[tex]\implies \textsf{P}(Z < \sf-1)=0.1586552539=15.9\%\:(nearest\:tenth)[/tex]