A supply of hex nuts is produced, and production records indicate a mean mass of 7.8 g with a standard deviation of 0.3 g. Assuming a normal distribution , estimate the percent of hex nuts with mass less than 7.5 g

Respuesta :

Answer:

15.9% (nearest tenth)

Step-by-step explanation:

[tex]X \sim \sf N(\mu, \sigma^2)[/tex]

Given:

  • mean = [tex]\mu[/tex] = 7.8 g
  • s.d. = [tex]\sigma[/tex] = 0.3 g

[tex]X \sim \sf N(7.8, 0.3^2)[/tex]

Using a calculator:

[tex]\implies \textsf{P}(X < \sf 7.5)=0.1586552539=15.9\%\:(nearest\:tenth)[/tex]

Converting to z-value:

[tex]\textsf{If }\: X \sim\textsf{N}(\mu,\sigma^2)\:\textsf{ then }\: \dfrac{X-\mu}{\sigma}=Z, \quad \textsf{where }\: Z \sim \textsf{N}(0,1)[/tex]

[tex]\implies \textsf{P}(X < 7.5)=\textsf{P}\left(Z < \dfrac{7.5-7.8}{0.3}\right)=\textsf{P}(Z < -1)[/tex]

[tex]\implies \textsf{P}(Z < \sf-1)=0.1586552539=15.9\%\:(nearest\:tenth)[/tex]

ACCESS MORE