what is the value of a?
![what is the value of a class=](https://us-static.z-dn.net/files/d20/0632be9170ef30e75cdc8bc8321dc0b8.png)
Answer:
a=2
Step-by-step explanation:
Firstly, in order to simplify the expression, we should aim to combine the two terms given. In order to do this, both must have the same denominator. We can give them the same denominator by multiplying the second term [tex]-\frac{2}{x+2}[/tex] by [tex]\frac{x+2}{x+2}[/tex]. This way the fraction value remains the same but now has the same denominator as the first term:
[tex]-\frac{2}{x+2} *\frac{x+2}{x+2} \\\\=\frac{(-2)(x+2)}{(x+2)(x+2)} \\\\=\frac{-2x-4}{(x+2)^{2}}[/tex]
From here we can now combine the two terms:
[tex]\frac{2x+6}{(x+2)^{2}} +\frac{-2x-4}{(x+2)^{2}} \\\\= \frac{(2x+6)+(-2x-4)}{(x+2)^{2}} \\\\\\=\frac{2x+6-2x-4}{(x+2)^{2}}\\\\= \frac{2}{(x+2)^{2}}[/tex]
Therefore, a = 2.
Hope this helped!