Goby33
contestada

The volume of a pyramid is given the equation V=⅓Bh. Solve for h. Then, find the height of the pyramid if the volume is 34 cm³ and the base area is 14.8 cm².​

Respuesta :

Answer:

6.89 cm

Step-by-step explanation:

Here, the equation is :

  • V = 1/3Bh

Substituting the known values :

  • 34 = 1/3 x 14.8 x h
  • 102 = 14.8h
  • h = 102/14.8
  • h = 6.89 cm (approximately)

Answer:

height: 6.9 cm

Explanation:

[tex]\sf Volume \ of \ Pyramid = \dfrac{1}{3} \ x \ Base \ Area \ x \ Height[/tex]

Here provided Information:

Volume: 34 cm³

base area: 14.8 cm²

Solve for Height:

[tex]\sf \rightarrow \dfrac{1}{3} \ x \ 14.8 \ x \ Height = 34[/tex]

change side

[tex]\sf \rightarrow Height = \dfrac{34(3)}{14.8}[/tex]

simplify following

[tex]\sf \rightarrow Height = 6.891892[/tex]

rounded to nearest tenth

[tex]\sf \rightarrow Height = 6.9[/tex]

ACCESS MORE

Otras preguntas