determine the value of the sum along with the steps
![determine the value of the sum along with the steps class=](https://us-static.z-dn.net/files/d49/434478e1167a79a16fad4aa1dac33bb5.jpg)
The n-th term in the sum (where n is a natural number 1 ≤ n ≤ 1999) is
[tex]\sqrt{1 + \dfrac1{n^2} + \dfrac1{(n+1)^2}}[/tex]
and can be simplified as
[tex]\sqrt{\dfrac{n^2(n+1)^2 + (n+1)^2 + n^2}{n^2(n+1)^2}} = \dfrac{n^2+n+1}{n(n+1)}[/tex]
and further expanded into partial fractions as
[tex]\dfrac{n^2+n+1}{n(n+1)} = 1 + \dfrac1{n(n+1)} = 1 + \dfrac1n - \dfrac1{n+1}[/tex]
Then the sum telescopes:
[tex]S = \left(1 + \dfrac11 - \dfrac12\right) + \left(1 + \dfrac12 - \dfrac13\right) + \left(1 + \dfrac13 - \dfrac14\right) + \cdots + \left(1 + \dfrac1{1999} - \dfrac1{2000}\right)[/tex]
[tex]S = 1999 + \dfrac11 - \dfrac1{2000} = 2000 - \dfrac1{2000} = \boxed{\frac{3,999,999}{2000}}[/tex]