Write the equation of the conic section below.

Answer:
[tex](x-3)^2=8(y+1)[/tex]
Step-by-step explanation:
Standard form of a parabola with a vertical axis of symmetry:
[tex](x-h)^2=4p(y-k) \quad \textsf{where}\:p\neq 0[/tex]
[tex]\textsf{Vertex}=(h, k)[/tex]
[tex]\textsf{Focus}=(h,k+p)[/tex]
[tex]\textsf{Directrix}:y=(k-p)[/tex]
[tex]\textsf{Axis of symmetry}:h=k[/tex]
If p > 0, the parabola opens upwards, and if p < 0, the parabola opens downwards.
From inspection of the graph:
Therefore:
Use the Directrix equation to find p
⇒ y = (k - p)
⇒ -3 = -1 - p
⇒ p = 2
Therefore the equation of the conic section is:
[tex]\implies (x-3)^2=4\cdot 2(y-(-1))[/tex]
[tex]\implies (x-3)^2=8(y+1)[/tex]
Rearranging in standard form [tex]ax^2+bx+c[/tex]:
[tex]\implies (x-3)^2=8y+8[/tex]
[tex]\implies x^2-6x+9-8=8y[/tex]
[tex]\implies x^2-6x+1=8y[/tex]
[tex]\implies y=\dfrac{1}{8}x^2-\dfrac{3}{4}x+\dfrac{1}{8}[/tex]