Respuesta :

Answer:

See below

Step-by-step explanation:

[tex]\displaystyle \frac{\sec x\sin x}{\tan x+\cot x}\\\\=\frac{\frac{1}{\cos x} \sin x}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}}\\ \\=\frac{\frac{\sin x}{\cos x} }{\frac{\sin x \sin x}{\cos x \sin x} + \frac{\cos x \cos x}{\cos x \sin x}}\\\\=\frac{\frac{\sin x}{\cos x} }{\frac{\sin^2 x}{\cos x \sin x} + \frac{\cos^2 x}{\cos x \sin x}}\\\\=\frac{\frac{\sin x}{\cos x}}{\frac{\sin^2 x+\cos^2 x}{\cos x \sin x} }\\ \\=\frac{\frac{\sin x}{\cos x} }{\frac{1}{\cos x \sin x} }[/tex]

[tex]=\frac{\sin x}{\cos x}\cdot \sin x \cos x\\ \\=\frac{\sin x \sin x \cos x}{\cos x}\\ \\=\sin^2x[/tex]

Thus, the identity is proven. Match the options up accordingly to my step-by-step process.