Answer:
B) 5x - 2y = 20 and 3x + 2y = 15
Step-by-step explanation:
Rewrite both equations in standard form:
Equation 1
[tex]\dfrac{1}{2}x-\dfrac{1}{5}y=2[/tex]
Multiply both sides by 10:
[tex]\implies \dfrac{1 \cdot 10}{2}x-\dfrac{1 \cdot 10}{5}y=2 \cdot 10[/tex]
[tex]\implies \dfrac{10}{2}x-\dfrac{10}{5}y=20[/tex]
[tex]\implies 5x-2y=20[/tex]
Equation 2
[tex]x+\dfrac{2}{3}y=5[/tex]
Multiply both sides by 3:
[tex]\implies x \cdot 3+\dfrac{2 \cdot 3}{3}y=5 \cdot 3[/tex]
[tex]\implies 3x+2y=15[/tex]
Therefore, the equivalent system is:
5x - 2y = 20 and 3x + 2y = 15