Respuesta :

Answer:

5 cm

Step-by-step explanation:

Area = length x width

40 = 8 x w

40/8 = w

5 = w

Question:

Rectangle A has area of 40cm² and length 8cm. The area of rectangle B is one-half the area of rectangle A. The rectangle have the same length. What is the width of rectangle B ?

Answer:

Given:

  • Area of Rectangle B is half of the area of Rectangle A.

[tex] \quad [/tex][tex] \quad [/tex] [tex] \quad [/tex] [tex] \quad [/tex][tex]{\large{\rm{{ \frac{1}{2} \times 40{cm}^{2} = 20{cm}^{2}}}}}[/tex]

  • Length of both the rectangles are same.

[tex] \quad [/tex]

Rectangle A :-

  • Length (l) = 8 cm
  • Area (A) = 40cm²

Rectangle B :-

  • Length (l) = 8cm
  • Area (A) = 20cm²

Width :

[tex] \quad [/tex] [tex] \quad [/tex] [tex] { \large{ \sf {\frac{Area (A)}{Length (L)}}}} \longrightarrow \frac{{ \cancel{20}}^{5} }{{ \cancel{8}} ^{2}} = \frac{5}{2} [/tex]

Thus, Width of Rectangle B is 5/2 cm.

[tex] \: [/tex]

[tex] \: [/tex]

Check:

We know,

[tex] \quad [/tex] Area of Rectangle = length × breadth

➛ 8 × [tex] \frac{5}{2} [/tex]

➛ [tex] {\large{ \frac{40}{2}}} [/tex]

➛ [tex] {\large{ \frac{ \cancel{40}^{20} }{ \cancel{2}^{1} }} = { \boxed{ \red{20}}}} [/tex]

ACCESS MORE