Respuesta :

Answer:

Step-by-step explanation:

Parallel lines and transversal:

 Linear pair: When the uncommon arms of two adjacent angles form a straight line, the adjacent angles are called linear pair and they add upto 180

3)  ∠3 + ∠2 = 180

     65 + ∠2 = 180

             ∠2 = 180 - 65

            ∠2 = 115°

When parallel lines   are intersected by  transversal, alternate exterior angles are congruent.

a // b and d is transversal.

  ∠5 = ∠11

 ∠5 = 100°

When  parallel lines are intersected by transversal, the alternate interior angles are congruent.

a // b and c is transversal

m∠13 = ∠3

  ∠13 = 65°

4)    ∠3 &  ∠14 are co-interior angles. Co-interior angles are supplementary.

∠3 +  ∠14 = 180

65 +  ∠14  = 180

           ∠14 = 180 - 65

           ∠14 = 115°  

∠5 +  ∠8 = 180    {Linear pair}

 100 +  ∠8 = 180

             ∠8 = 180 - 100

             ∠8= 80

∠9 =  ∠11 {vertically opposite angles are congruent}

∠9 = 100

∠ 3 + ∠14 + ∠ 8 + ∠9 = 65 + 115 + 80 + 100

                                   = 360°

ACCESS MORE