Calculus - need work shown
![Calculus need work shown class=](https://us-static.z-dn.net/files/dd6/e23df67cf84a165752eefdf4160cc48a.jpeg)
Answer:
[tex]\large \text{$ -\dfrac{1}{2}\cos (8x^2+24x) + C $}[/tex]
Step-by-step explanation:
[tex]\large \displaystyle\begin{aligned}\textsf{let }\:u & =8x^2+24x\\\\\implies \dfrac{du}{dx} & =16x+24\\ & =2(8x+12)\\\\\implies dx & =\dfrac{1}{2(8x+12)}\: du\\\end{aligned}[/tex]
[tex]\large\displaystyle\begin{aligned}\int (8x+12) \sin (8x^2+24x)\:dx & = \int (8x+12) \sin (u) \cdot \dfrac{1}{2(8x+12)}\:du\\\\& = \int \dfrac{(8x+12)\sin (u)}{2(8x+12)}\:du\\\\& = \int \dfrac{1}{2}\sin (u)\:du\\\\& = -\dfrac{1}{2}\cos (u) + C\\\\& = -\dfrac{1}{2}\cos (8x^2+24x) + C\\\\\end{aligned}[/tex]