Answer:
Step-by-step explanation:
Cone:
diameter = 12 cm
r = 12 ÷ 2 = 6 cm
h = 6 cm
[tex]\sf \boxed{\text{\bf Volume of cone = $\dfrac{1}{3} \pi r^2h$ }}[/tex]
[tex]\sf = \dfrac{1}{3}*3.14*6*6*6\\\\ = 226.08 \ cm^3[/tex]
To find the surface area, we need to find the slant 'l'
[tex]\sf l = \sqrt{h^2+r^2}\\\\ =\sqrt{6^2+6^2}\\\\ = \sqrt{36+36}\\\\ =\sqrt{72}\\\\= 8.49 \ cm[/tex]
[tex]\sf \boxed{\text{\bf Total surface area of cone = $\pi r(r+l)$}}[/tex]
= 3.14 * 6 * (6 + 8.49)
= 3.14 * 6 * 14.49
= 273 cm²