Answer:
See below
Step-by-step explanation:
Use the formulae directly
For a cone, with base radius = r and height = h, here are the related formula
[tex]\textrm{Slant height l} = \sqrt{r^2 + h^2}[/tex] (1)
[tex]\textrm{Lateral surface area} = \pi r l[/tex]
[tex]\textrm {Base area} = \pi r^2[/tex]
[tex]\textrm { Total Surface Area SA} = \textrm{Base Area + Lateral Area} = \pi r^2 + \pi rl = \pi r(r + l)[/tex] (2)
[tex]\textrm{Volume V = } (1/3) \pi r^2h[/tex] (3)
Therefore directly plugging in the numbers in the above equations:
Note:
l = slant height in cm
SA = total surface area in sqcm
V = Volume in cubic cm
Figure(a)
r = 4, h = 8
[tex]\textrm{l} = \sqrt{4^2 + 8^2} =\sqrt{80} = 8.944 \\\textrm{SA} = 4\pi(4 + 8.944) = 4\pi(12.944) = 162.66\\\textrm{V} = (1/3)\pi(4^2)(8) = 134.04[/tex]
Figure(b)
r = 7, h =15
[tex]\textrm{l} = \sqrt{7^2 + 15^2} =\sqrt{274} = 16.55[/tex]
[tex]\textrm{SA} = 7\pi(7 + 16.55) = 517.89[/tex]
Figure (c)
r = 5, l = 8
[tex]h = \sqrt{l^2 - r^2} = \sqrt{8^2 - 5^2} = \sqrt{39} = 6.245\\SA = \textrm{SA} = 5\pi(5 + 8) = 204.2\\V = (1/3)\pi(5^2)(6.245) = 163.5[/tex]