Simplify [tex]\frac{sin^2x+cos^2x}{sin x}[/tex]
![Simplify texfracsin2xcos2xsin xtex class=](https://us-static.z-dn.net/files/dcf/157c3161707a8f134cddb5311c7a8322.png)
Let's see
[tex]\\ \rm\Rrightarrow \dfrac{sin^2x+cos^x}{sinx}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{1}{sinx}[/tex]
[tex]\\ \rm\Rrightarrow cosecx[/tex]
Answer:
cosec x
(or csc x)
Step-by-step explanation:
Trig Identities
[tex]\sf \sin^2 x + \cos^2 x=1[/tex]
[tex]\sf \dfrac{1}{\sin x}=cosec\: x[/tex]
Therefore,
[tex]\begin{aligned}\implies \sf \dfrac{\sin^2x + \cos^2x}{\sin x} &= \sf\dfrac{1}{\sin x}\\\\ & = \sf cosec\:x \end{aligned}[/tex]