Respuesta :

Let's see

[tex]\\ \rm\Rrightarrow \dfrac{sin^2x+cos^x}{sinx}[/tex]

  • sin²x+cos²x=1

[tex]\\ \rm\Rrightarrow \dfrac{1}{sinx}[/tex]

[tex]\\ \rm\Rrightarrow cosecx[/tex]

Answer:

cosec x

(or csc x)

Step-by-step explanation:

Trig Identities

[tex]\sf \sin^2 x + \cos^2 x=1[/tex]

[tex]\sf \dfrac{1}{\sin x}=cosec\: x[/tex]

Therefore,

[tex]\begin{aligned}\implies \sf \dfrac{\sin^2x + \cos^2x}{\sin x} &= \sf\dfrac{1}{\sin x}\\\\ & = \sf cosec\:x \end{aligned}[/tex]

ACCESS MORE