Respuesta :

Answer:

[tex]\displaystyle \frac{x^2}{12}-\frac{y^2}{24}=1[/tex]

Step-by-step explanation:

Since the directrices are vertical lines:

  • Use the hyperbola equation [tex]\displaystyle \frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1[/tex]
  • Foci are [tex](\pm c,0)[/tex]
  • [tex]a^2+b^2=c^2[/tex]
  • [tex]a[/tex] and [tex]b[/tex] are half the lengths of the tranverse and conjugate axes respectively
  • Directrices are located at the lines [tex]\displaystyle x=\pm\frac{a^2}{c}[/tex]
  • We assume the center to be [tex](h,k)\rightarrow(0,0)[/tex]

Since we already know our directrices are at the lines [tex]x=\pm2[/tex] and we know that [tex]c=\pm6[/tex] from our foci, we can solve for the value of [tex]a^2[/tex]:

[tex]x=\frac{a^2}{c}\\\\2=\frac{a^2}{6}\\\\12=a^2[/tex]

This allows us to solve for the value of [tex]b^2[/tex]:

[tex]a^2+b^2=c^2\\\\12+b^2=6^2\\\\12+b^2=36\\\\b^2=24[/tex]

Thus, our equation for the hyperbola is [tex]\displaystyle \frac{x^2}{12}-\frac{y^2}{24}=1[/tex].