[tex]\bf{1) \ x^4-61x^2+900=0 }[/tex]
Applying the factorization method, for example:
[tex]\bf{ 0=(x^2)^2-61(x^2)+900=(x^2-36)(x^2-25)}[/tex]
[tex]\bf{\\ &=(x+6)(x-6)(x+5)(x-5); }[/tex]
[tex]\bf{ x_1=6 \quad x_2=-6 \quad \ \ \ x_3=5 \quad x_4=5 }[/tex]
[tex]\bf{2) \ x^4-25x^2+144=0 }[/tex]
Applying the factorization method:
[tex]\bf{0&=(x^2)^2-25(x^2)+144=(x^2-16)(x^2-9) }[/tex]
[tex]\bf{ =(x-4)(x+4)(x-3)(x+3); }[/tex]
[tex]\bf{ x_1=4 \quad x_2=-4 \quad x_3=3 \quad x_4=-3 }[/tex]