Which equation correctly shows how to determine the distance between the points (9, -2) and (6, 3) on a coordinate
grid?
O da V(6-3)2 + (9-(-21)
od= V(6+3)2 + (9+ (-2)
d-(6-9)+(3-(-2))?
d=16+9)2 + (3+(-2112

Respuesta :

Answer:

D)    [tex]d=\sqrt{(6-9)^2+(3-(-2))^2}[/tex]

Step-by-step explanation:

Distance between two points formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Given:

(x₂, y₂) = (6, 3)

(x₁, y₁) = (9, -2)

[tex]\implies d=\sqrt{(6-9)^2+(3-(-2))^2}[/tex]

Esther

Answer:

[tex]\large \textsf{d = $\sqrt{(6-9)^2+(3-(-2))^2}$}[/tex]

Step-by-step explanation:

Distance formula: [tex]\large \textsf {d = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$}[/tex]

Distance between the points (9, -2) and (6, 3):

  • x₁ = 9
  • x₂ = 6
  • y₁ = -2
  • y₂ = 3

[tex]\large \textsf {d = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$}\\\\\large \textsf{d = $\sqrt{(6-9)^2+(3-(-2))^2}$}\\\\\large \textsf{d = $\sqrt{(6-9)^2+(3+2)^2}$}\\\\[/tex]

Hope this helps!