Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Let's calculate the value of c using Pythagoras theorem ~

[tex]\qquad \sf  \dashrightarrow \: c {}^{2} = a {}^{2} + {b}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \: 40 {}^{2} = {24}^{2} + {b}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \: b² = \sqrt{40² - 24²} [/tex]

[tex]\qquad \sf  \dashrightarrow \: b= \sqrt{1600-576} [/tex]

[tex] {\qquad \sf  \dashrightarrow \: b= \sqrt{1024}} [/tex]

[tex]\qquad \sf  \dashrightarrow \: b = 32 \: units[/tex]

Given:

  • hypotenuse= 40
  • side 1= 24

To find:

The length of "b"

Solution:

[tex] {c}^{2} = {a}^{2} - {b}^{2} [/tex]

[tex] {b}^{2} = {40}^{2} - {24}^{2} [/tex]

[tex]b = 1024[/tex]

[tex]b = \sqrt{1024} [/tex]

[tex]b = 32[/tex]

Hence, the length of "b" is 32.

ACCESS MORE