Respuesta :
Answer:
[tex]\csc \left(\dfrac{4\pi}{3}\right)=-\dfrac{2}{\sqrt{3}}[/tex]
Step-by-step explanation:
[tex]\phi=\dfrac{4 \pi}{3}[/tex]
Therefore, this angle lies in quadrant III since it is between π and 3π/2
It's reference angle is:
[tex]\dfrac{4 \pi}{3}-\pi=\dfrac{\pi}{3}[/tex]
and so lies in quadrant I
[tex]\csc (\phi)=\dfrac{1}{\sin(\phi)}[/tex]
For sine, quadrant I and II are positive and quadrant III and IV are negative.
Therefore, as [tex]\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}[/tex] then [tex]\sin \dfrac{4\pi}{3}=-\dfrac{\sqrt{3}}{2}[/tex]
Finally,
[tex]\csc \left(\dfrac{4\pi}{3}\right)=\dfrac{1}{\sin\left(\dfrac{4\pi}{3}\right)}[/tex]
[tex]\implies \csc \left(\dfrac{4\pi}{3}\right)=\dfrac{1}{-\dfrac{\sqrt{3}}{2}}[/tex]
[tex]\implies \csc \left(\dfrac{4\pi}{3}\right)=-\dfrac{2}{\sqrt{3}}[/tex]
[tex]\\ \rm\Rrightarrow csc\dfrac{4\pi}{3}[/tex]
[tex]\\ \rm\Rrightarrow csc\left(\pi +\dfrac{\pi}{3}\right)[/tex]
- So it lies in Q3 and it's reference angle is π/3
- Reference angle like usual lies in Q1 .
Now for value
[tex]\\ \rm\Rrightarrow csc\left(\pi+\dfrac{\pi}{3}\right)[/tex]
- In Q1 All are positive
- In Q2 sine and cosec are positive .
- In. Q3 tan and cot are positive .
- In Q4 cos and sec are positive.
As it lies in Q3 it's negative
[tex]\\ \rm\Rrightarrow csc\left(-\dfrac{\pi}{3}\right)[/tex]
[tex]\\ \rm\Rrightarrow -csc\dfrac{\pi}{3}[/tex]
[tex]\\ \rm\Rrightarrow -\dfrac{2}{\sqrt{3}}[/tex]