Azailia
contestada

Determine which quadrant the angle Ф lies and the reference angle.
Then, find the indicated ratio for Ф' (must be an exact value).
Finally, determine the value for the original expression using the quadrants.

csc[tex]\cfrac{4\pi }{3}[/tex]

Respuesta :

Answer:

[tex]\csc \left(\dfrac{4\pi}{3}\right)=-\dfrac{2}{\sqrt{3}}[/tex]

Step-by-step explanation:

[tex]\phi=\dfrac{4 \pi}{3}[/tex]

Therefore, this angle lies in quadrant III since it is between π and 3π/2

It's reference angle is:

[tex]\dfrac{4 \pi}{3}-\pi=\dfrac{\pi}{3}[/tex]

and so lies in quadrant I

[tex]\csc (\phi)=\dfrac{1}{\sin(\phi)}[/tex]

For sine, quadrant I and II are positive and quadrant III and IV are negative.

Therefore, as  [tex]\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}[/tex]  then [tex]\sin \dfrac{4\pi}{3}=-\dfrac{\sqrt{3}}{2}[/tex]

Finally,

[tex]\csc \left(\dfrac{4\pi}{3}\right)=\dfrac{1}{\sin\left(\dfrac{4\pi}{3}\right)}[/tex]

[tex]\implies \csc \left(\dfrac{4\pi}{3}\right)=\dfrac{1}{-\dfrac{\sqrt{3}}{2}}[/tex]

[tex]\implies \csc \left(\dfrac{4\pi}{3}\right)=-\dfrac{2}{\sqrt{3}}[/tex]

[tex]\\ \rm\Rrightarrow csc\dfrac{4\pi}{3}[/tex]

[tex]\\ \rm\Rrightarrow csc\left(\pi +\dfrac{\pi}{3}\right)[/tex]

  • So it lies in Q3 and it's reference angle is π/3
  • Reference angle like usual lies in Q1 .

Now for value

[tex]\\ \rm\Rrightarrow csc\left(\pi+\dfrac{\pi}{3}\right)[/tex]

  • In Q1 All are positive
  • In Q2 sine and cosec are positive .
  • In. Q3 tan and cot are positive .
  • In Q4 cos and sec are positive.

As it lies in Q3 it's negative

[tex]\\ \rm\Rrightarrow csc\left(-\dfrac{\pi}{3}\right)[/tex]

[tex]\\ \rm\Rrightarrow -csc\dfrac{\pi}{3}[/tex]

[tex]\\ \rm\Rrightarrow -\dfrac{2}{\sqrt{3}}[/tex]

ACCESS MORE