Given: cot32°=4/3 and cos44°=7/9 find sin62°
![Given cot3243 and cos4479 find sin62 class=](https://us-static.z-dn.net/files/dcc/042cede55614dc1eafcae85d6488846e.png)
This question has the same problem as the other one you shared. Neither cot(32°) = 4/3 nor cos(44°) = 7/9 are true.
But if we indulge the author for a moment, we have from the double angle identity
[tex]\sin(2x) = 2\sin(x) \cos(x)[/tex]
so if x = 32°, then
[tex]\sin(64^\circ) = 2\sin(32^\circ) \cos(32^\circ)[/tex]
We also have from the Pythagorean identity
[tex]\sin^2(x) + \cos^2(x) = 1 \implies 1 + \cot^2(x) = \csc^2(x) \\\\ \implies \csc(x) = \pm \sqrt{1+\cot^2(x)} \\\\ \implies \sin(x) = \pm \dfrac1{\sqrt{1+\cot^2(x)}}[/tex]
Now, 0° < 32° < 90°, so both sin(32°) and cos(32°) are positive.
If we assume cot(32°) = 4/3 to be true, it follows that
[tex]\sin(32^\circ) = \dfrac1{\sqrt{1+\left(\frac43\right)^2}} = \dfrac35[/tex]
[tex]\cos(32^\circ) = \sqrt{1 - \sin^2(32^\circ)} = \dfrac45[/tex]
[tex]\implies \sin(64^\circ) = 2\times\dfrac35\times\dfrac45 = \dfrac{24}{25}[/tex]
so E is the only correct choice regardless of the baseless assumptions made by the question.