Respuesta :

This question has the same problem as the other one you shared. Neither cot(32°) = 4/3 nor cos(44°) = 7/9 are true.

But if we indulge the author for a moment, we have from the double angle identity

[tex]\sin(2x) = 2\sin(x) \cos(x)[/tex]

so if x = 32°, then

[tex]\sin(64^\circ) = 2\sin(32^\circ) \cos(32^\circ)[/tex]

We also have from the Pythagorean identity

[tex]\sin^2(x) + \cos^2(x) = 1 \implies 1 + \cot^2(x) = \csc^2(x) \\\\ \implies \csc(x) = \pm \sqrt{1+\cot^2(x)} \\\\ \implies \sin(x) = \pm \dfrac1{\sqrt{1+\cot^2(x)}}[/tex]

Now, 0° < 32° < 90°, so both sin(32°) and cos(32°) are positive.

If we assume cot(32°) = 4/3 to be true, it follows that

[tex]\sin(32^\circ) = \dfrac1{\sqrt{1+\left(\frac43\right)^2}} = \dfrac35[/tex]

[tex]\cos(32^\circ) = \sqrt{1 - \sin^2(32^\circ)} = \dfrac45[/tex]

[tex]\implies \sin(64^\circ) = 2\times\dfrac35\times\dfrac45 = \dfrac{24}{25}[/tex]

so E is the only correct choice regardless of the baseless assumptions made by the question.