Respuesta :

Answer:

m∠C = 110.9° (1 dp)

Step-by-step explanation:

The largest angle in a triangle is opposite the longest side.

Therefore, from inspection of the diagram, angle C is the largest angle since length AB is the longest side length.

To find angle C, use the cosine rule:

[tex]\sf c^2=a^2+b^2-2ab \cos C[/tex]

(where a, b and c are the sides, and C is the angle opposite side c)

Given:

  • a = BC = 11cm
  • b = AC = 7 cm
  • c = AB = 15 cm

Substituting the given values into the formula and solving for C:

[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]

[tex]\implies \sf 15^2=11^2+7^2-2(11)(7) \cos C[/tex]

[tex]\implies \sf 225=170-154 \cos C[/tex]

[tex]\implies \sf \cos C=\dfrac{225-170}{-154}[/tex]

[tex]\implies \sf \cos C=-\dfrac{5}{14}[/tex]

[tex]\implies \sf C=\cos ^{-1}\left(-\dfrac{5}{14}\right)[/tex]

[tex]\implies \sf C=110.9248324...^{\circ}[/tex]

Therefore, m∠C = 110.9° (1 dp)

Answer:

see photo for detailed analysis

Ver imagen princechimezirim096
ACCESS MORE