Answer:
[tex]y=6.50-0.25x[/tex]
Step-by-step explanation:
[tex]\textsf{let}\:(x_1,y_1)=(2,6)[/tex]
[tex]\textsf{let}\:(x_2,y_2)=(6,5)[/tex]
[tex]\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{5-6}{6-2}=-0.25[/tex]
Point-slope form of linear equation: [tex]y-y_1=m(x-x_1)[/tex]
(where m is the slope and (x₁, y₁) is a point on the line)
Substituting the found slope and a point on the line:
[tex]\implies y-6=-0.25(x-2)[/tex]
[tex]\implies y-6=-0.25x+0.5[/tex]
[tex]\implies y=-0.25x+6.5[/tex]
Rearranging the equation to match the answer options given:
[tex]\implies y=6.50-0.25x[/tex]