Determine the linear function of the line that goes through the points (2; 6) and
(6; 5).
(1) = −6,50 + 0,50;
(2) = 0,25 − 6,50;
(3) = 6,50 − 0,25;
(4) = −0,65 − 0,25x

Respuesta :

Answer:

[tex]y=6.50-0.25x[/tex]

Step-by-step explanation:

[tex]\textsf{let}\:(x_1,y_1)=(2,6)[/tex]

[tex]\textsf{let}\:(x_2,y_2)=(6,5)[/tex]

[tex]\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{5-6}{6-2}=-0.25[/tex]

Point-slope form of linear equation:  [tex]y-y_1=m(x-x_1)[/tex]

(where m is the slope and (x₁, y₁) is a point on the line)

Substituting the found slope and a point on the line:

[tex]\implies y-6=-0.25(x-2)[/tex]

[tex]\implies y-6=-0.25x+0.5[/tex]

[tex]\implies y=-0.25x+6.5[/tex]

Rearranging the equation to match the answer options given:

[tex]\implies y=6.50-0.25x[/tex]

ACCESS MORE