Work out length of BC

Answer:
assume [tex]13 = z \\ 8 =x \\ bc = y[/tex]
by phytagorean theorem
[tex]{y}^{2} + {x}^{2} = z^{2} [/tex]
so
[tex]bc = y = \sqrt{ {z}^{2} - {x}^{2} } = \sqrt{169 - 64} = \sqrt{105} [/tex]
[tex] \huge \tt \color{pink}{A}\color{blue}{n}\color{red}{s}\color{green}{w}\color{grey}{e}\color{purple}{r }[/tex]
[tex] \large\underline{ \boxed{ \sf{✰\:Note }}}[/tex]
★ 1st let's know what is the given figure is and it's related concepts for solving !
[tex] \rule{70mm}{2.9pt}[/tex]
★ Writing this theorem mathematically ★
[tex] { \boxed{✫\underline{ \boxed{ \sf{Pythagorean \: theorem \: ⇒ {Hypotenuse }^2={ Base }^2+ {Height }^2}}}✫}}[/tex]
★ Here ★
[tex] \rule{70mm}{2.9pt}[/tex]
[tex] \boxed{ \rm{ \pink ➛BA^2= AC^2+BC^2}}[/tex]
[tex] \rule{70mm}{2.9pt}[/tex]
[tex]\rm{ \pink ➛13^2= 8^2+x^2} \\ \rm{ \pink ➛169 = 64 + {x}^{2} } \\ \rm{ \pink ➛169 - 64 = {x}^{2} } \\ \rm{ \pink ➛105 = {x}^{2}} \\ \rm{ \pink ➛ \sqrt{105} \: or \: 10.2469 = x} \\ [/tex]
[tex] \rule{70mm}{2.9pt}[/tex]
Hence length (BC) in the given triangle is of
[tex] { \boxed{✛\underline{ \boxed{ \sf{\sqrt{105} cm\: or \: 10.2469cm\green✓}}}✛}}[/tex]
[tex] \rule{70mm}{2.9pt}[/tex]
Hope it helps !