Respuesta :

Magnitude and direction of u + v + w is equals to 57.871 and 19°.

What is vectors?

"Vectors are those quantity of which represents both direction as well magnitude."

According to the question,

As shown in diagram we have,

u + v + w

   = (wcos30°)[tex]\^{i}[/tex] + (wsin30°)[tex]\^{j}[/tex] +(vcos20°)[tex]\^{j}[/tex] - (vsin40°)[tex]\^{i}[/tex] -(ucos40°)[tex]\^{i}[/tex] -(usin40°)[tex]\^{j}[/tex]

  = ( wcos30° - vsin40° - ucos40°)[tex]\^{i}[/tex] + (wsin30°+ vcos20° - usin40°)[tex]\^{j}[/tex]

   

Substitute the value of ║w║ = 40 ,║v║=60,and ║u║= 90 we get,

u + v +w

= (  40cos30° - 60sin40° - 90cos40°)[tex]\^{i}[/tex] + (40sin30°+ 60cos20° - 90sin40°)[tex]\^{j}[/tex]

= (20√3 - 20.5212 - 68.9440)[tex]\^{i}[/tex] + ( 20 +56.3816 - 57.8509)[tex]\^{j}[/tex]

= ( -54.8242)[tex]\^{i}[/tex] + (18.5307)[tex]\^{j}[/tex]

Therefore,

Magnitude = √(-54.8242)² +(18.5307)²

                  =√3349.0798

                  = 57.8712

   tanθ = ( 0.3380)

⇒θ = tan⁻¹ (0.3380)

     = 18.67

    ≈ 19°

Hence, magnitude and direction of u + v + w is equals to 57.871 and 19°.

Learn more about vectors here

https://brainly.com/question/17108011

#SPJ2

Ver imagen Yogeshkumari
ACCESS MORE