Respuesta :

Answer:

AB = 27.2

BC = 33.5

AC = 50.4

∠A = 38°

∠ABC = 112°

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

[tex]\implies \sf \cos(30^{\circ})=\dfrac{29}{BC}[/tex]

[tex]\implies \sf BC=\dfrac{29}{\cos(30^{\circ})}[/tex]

[tex]\implies \sf BC=\dfrac{58\sqrt{3}}{3}=33.5\:(nearest\:tenth)[/tex]

[tex]\implies \sf \tan(30^{\circ})=\dfrac{BD}{29}[/tex]

[tex]\implies \sf BD=29\tan(30^{\circ})[/tex]

[tex]\implies \sf BD=\dfrac{29\sqrt{3}}{3}[/tex]

[tex]\implies \sf \sin(38^{\circ})=\dfrac{BD}{AB}[/tex]

[tex]\implies \sf AB=\dfrac{\dfrac{29\sqrt{3}}{3}}{\sin(38^{\circ})}[/tex]

[tex]\implies \sf AB=27.2\:(nearest\:tenth)[/tex]

[tex]\implies \sf \tan(38^{\circ})=\dfrac{BD}{AD}[/tex]

[tex]\implies \sf AD=\dfrac{\dfrac{29\sqrt{3}}{3}}{\tan(38^{\circ})}[/tex]

[tex]\implies \sf AD=21.4\:(nearest\:tenth)[/tex]

[tex]\implies \sf AC=AD+DC=21.4+29=50.4[/tex]

The interior angles of a triangle sum to 180°

⇒ ∠A + 52° + 90° = 180°

⇒ ∠A = 180° - 90° - 52°

⇒ ∠A = 38°

⇒ ∠ABC + 38° + 30° = 180°

⇒ ∠ABC = 180° - 38° - 30°

⇒ ∠ABC = 112°

**I have checked the measures using a graphing programme - see attached**

Ver imagen semsee45
ACCESS MORE