Respuesta :

Answer:

AB = 75

BC = 60

AC = 45

m∠A = 53°

m∠B = 37°

m∠C = 90°

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Given:

[tex]\sf \tan(A)=\dfrac{60}{45}[/tex]

Therefore:

  • side opposite angle A = BC = 60
  • side adjacent angle A = AC = 45

To find the length of AB (the hypotenuse), use Pythagoras’ Theorem:

[tex]a^2+b^2=c^2[/tex]

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

⇒ AC² + BC² = AB²

⇒ 45² + 60² = AB²

⇒ AB² = 5625

⇒ AB = √5625

AB = 75

To find m∠A:

[tex]\implies\sf \tan(A)=\dfrac{60}{45}[/tex]

[tex]\implies\sf A=\tan^{-1}\left(\dfrac{60}{45}\right)[/tex]

[tex]\implies\sf A=53^{\circ}\:(nearest\:degree)[/tex]

m∠C = 90° (as it is a right angle)

The interior angles of a triangle sum to 180°

⇒ m∠A + m∠B + m∠C = 180°

⇒ 53° + m∠B + 90° = 180°

⇒ m∠B = 180° - 53° - 90°

m∠B = 37°

ACCESS MORE