The recursive formula of the geometric sequence is [tex]a_{n} = 5a_{n-1}[/tex] and a1 = 1.25
How to determine the recursive formula?
The given parameters are:
Fifth term = 781.25
Term = 1/5 * following term
The second parameter above means that:
[tex]a_n = \frac{1}{5} * a_{n+ 1}[/tex]
Multiply both sides by 5
[tex]a_{n+1} = 5a_n[/tex]
Remove 1 from the terms
[tex]a_{n} = 5a_{n-1}[/tex]
Using the formula [tex]a_n = \frac{1}{5} * a_{n+ 1}[/tex], we have the first term to be:
[tex]a_1 = \frac 15 * a_2[/tex]
[tex]a_2 = \frac 15 * a_3[/tex]
[tex]a_3 = \frac 15 * a_4[/tex]
[tex]a_4 = \frac 15 * a_5 = \frac 15 * 781.25 = 156.25[/tex]
So, we have:
[tex]a_3 = \frac 15 * 156.25 = 31.25[/tex]
[tex]a_2 = \frac 15 * 31.25 = 6.25[/tex]
[tex]a_1 = \frac 15 * 6.25 = 1.25[/tex]
Hence, the recursive formula is [tex]a_{n} = 5a_{n-1}[/tex] and a1 = 1.25
Read more about recursive sequence at:
https://brainly.com/question/1275192
#SPJ1