Answer:
height = 21 cm
Step-by-step explanation:
[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
Substituting given values into the formula and solving for r:
[tex]\implies \sf 343 \pi=\dfrac{1}{3} \pi r^2(3r)[/tex]
[tex]\implies \sf 343=\dfrac{1}{3}\cdot3r^3[/tex]
[tex]\implies \sf 343=r^3[/tex]
[tex]\implies \sf r=\sqrt[3]{343}[/tex]
[tex]\implies \sf r=7\:cm[/tex]
As h = 3r, substitute found value of r into the equation and solve for h:
[tex]\implies \sf h = 3r[/tex]
[tex]\implies \sf h=3(7)[/tex]
[tex]\implies \sf h=21\:cm[/tex]