In the diagram, the height of the cone is 3 times the
radius. The volume of the cone is 343 Pie cm^3?. What is the
height of the cone?

Respuesta :

Answer:

height = 21 cm

Step-by-step explanation:

[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]

Given:

  • h = 3r
  • Volume = 343π cm³

Substituting given values into the formula and solving for r:

[tex]\implies \sf 343 \pi=\dfrac{1}{3} \pi r^2(3r)[/tex]

[tex]\implies \sf 343=\dfrac{1}{3}\cdot3r^3[/tex]

[tex]\implies \sf 343=r^3[/tex]

[tex]\implies \sf r=\sqrt[3]{343}[/tex]

[tex]\implies \sf r=7\:cm[/tex]

As h = 3r, substitute found value of r into the equation and solve for h:

[tex]\implies \sf h = 3r[/tex]

[tex]\implies \sf h=3(7)[/tex]

[tex]\implies \sf h=21\:cm[/tex]

ACCESS MORE