Helpppppppppppppppp please
![Helpppppppppppppppp please class=](https://us-static.z-dn.net/files/d59/ae15b534b222c9301103ce3cc0a6c615.png)
As there is the highest degree 4 there are four zeros .
Using calculator
the roots are(attached)
The graph is also attached
Answer:
a) 4 roots
b) x = 1 and x = -3
[tex]\textsf{c)} \quad x=1, \quad x=-3, \quad x=\dfrac{-1 + \sqrt{3}i}{2}, \quad x=\dfrac{-1 - \sqrt{3}i}{2}[/tex]
d) see attached
Step-by-step explanation:
Given function:
[tex]f(x)=x^4+3x^3-x-3[/tex]
Part (a)
From inspection of the function, the highest exponent of the polynomial is 4. Therefore, it is expected that the polynomial will have 4 roots.
Part (b)
To find the rational roots, find values of x where [tex]f(x)=0[/tex]
[tex]f(1)=(1)^4+3(1)^3-1-3=0[/tex]
[tex]f(-3)=(-3)^4+3(-3)^3-(-3)-3=0[/tex]
Therefore, the rational roots are: x = 1 and x = -3
Part (c)
As there are only 2 rational roots, the other 2 roots must be complex roots. To find these, first factor the polynomial using the 2 rational roots found in part (b):
[tex]\implies f(x)=(x-1)(x+3)(x^2+bx+1)[/tex]
[tex]\implies f(x)=(x^2+2x-3)(x^2+bx+1)[/tex]
[tex]\implies f(x)=x^4+bx^3+x^2+2x^3+2bx^2+2x-3x^2-3bx-3[/tex]
[tex]\implies f(x)=x^4+(2+b)x^3+(2b-2)x^2+(2-3b)-3[/tex]
Compare coefficients to find b:
[tex]\implies (2+b)x^3=3x^3[/tex]
[tex]\implies b=1[/tex]
Therefore the fully factored function is:
[tex]\implies f\:\!(x)=(x-1)(x+3)(x^2+x+1)[/tex]
Therefore:
[tex](x^2+x+1)=0[/tex]
To find the complex roots, use the quadratic formula
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]
[tex]\implies x=\dfrac{-1 \pm \sqrt{1^2-4(1)(1)}}{2(1)}[/tex]
[tex]\implies x=\dfrac{-1 \pm \sqrt{-3}}{2}[/tex]
[tex]\implies x=\dfrac{-1 \pm \sqrt{3}\sqrt{-1}}{2}[/tex]
[tex]\implies x=\dfrac{-1 \pm \sqrt{3}i}{2}[/tex]
Therefore, all the roots of the function are:
[tex]x=1, \quad x=-3, \quad x=\dfrac{-1 + \sqrt{3}i}{2}, \quad x=\dfrac{-1 - \sqrt{3}i}{2}[/tex]
Part (d)
End behaviors:
As the degree of the function is even and the leading coefficient is positive, the end behaviors are:
[tex]\textsf{As } x \rightarrow - \infty, \:\: f(x) \rightarrow + \infty[/tex]
[tex]\textsf{As } x \rightarrow + \infty, \:\: f(x) \rightarrow + \infty[/tex]
y-intercept
Substitute x = 0 into the function:
[tex]f\:\!(0)=(0)^4+3(0)^3-(0)-3=-3[/tex]
Therefore, the y-intercept is (0, -3)
To find the approximate x-coordinates of the turning points (stationary points), differentiate the function, set it to zero, then solve for x:
[tex]f'\:(x)=4x^3+9x^2-1[/tex]
[tex]\implies 4x^3+9x^2-1=0[/tex]
Using a calculator, x ≈ -2.2, x ≈ -0.4, x ≈ 0.3
Therefore the approximate coordinates of the turning points are:
(-2.2, -9.3), (-0.4, -2.7) and (0.3, -3.2)
We don't need to plot these points, they merely help us with the approximate shape of the curve.