Respuesta :

The result of expanding the trigonometry expression [tex]\sin^2(\theta) * (1 + \cos(\theta))[/tex] is [tex]cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]

How to evaluate the expression?

The expression is given as:

[tex]\sin^2(\theta) * (1 + \cos(\theta))[/tex]

Express [tex]\sin^2(\theta)[/tex] as [tex]1 - \cos^2(\theta)[/tex].

So, we have:

[tex]\sin^2(\theta) * (1 + \cos(\theta)) = (1- \cos^2(\theta)) * (1 + \cos(\theta))[/tex]

Open the bracket

[tex]\sin^2(\theta) * (1 + \cos(\theta)) = 1 + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]

Express 1 as cos°(Ф)

[tex]\sin^2(\theta) * (1 + \cos(\theta)) = cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]

Hence, the result of expanding the trigonometry expression [tex]\sin^2(\theta) * (1 + \cos(\theta))[/tex] is [tex]cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]

Read more about trigonometry expressions at:

https://brainly.com/question/8120556

#SPJ1

ACCESS MORE