The result of expanding the trigonometry expression [tex]\sin^2(\theta) * (1 + \cos(\theta))[/tex] is [tex]cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]
The expression is given as:
[tex]\sin^2(\theta) * (1 + \cos(\theta))[/tex]
Express [tex]\sin^2(\theta)[/tex] as [tex]1 - \cos^2(\theta)[/tex].
So, we have:
[tex]\sin^2(\theta) * (1 + \cos(\theta)) = (1- \cos^2(\theta)) * (1 + \cos(\theta))[/tex]
Open the bracket
[tex]\sin^2(\theta) * (1 + \cos(\theta)) = 1 + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]
Express 1 as cos°(Ф)
[tex]\sin^2(\theta) * (1 + \cos(\theta)) = cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]
Hence, the result of expanding the trigonometry expression [tex]\sin^2(\theta) * (1 + \cos(\theta))[/tex] is [tex]cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)[/tex]
Read more about trigonometry expressions at:
https://brainly.com/question/8120556
#SPJ1