The length of a rectangle is 7 more than the width. The area is 744 sqaure yards, find the length and width of the rectangle​

Respuesta :

Answer:

  • Length of rectangle is 31 yards and Width is 24 yards.

Given:

  • The length of a rectangle is 7 more than the width.
  • The area is 744 sqaure yards

Solution:

Let's assume Width of rectangle be x and Length of rectangle be x + 7 respectively.

Using formula

[tex] \\ \: \: \: \: \pink{ \dashrightarrow \: \: \: \: \sf { \underbrace{Area_{(Rectangle)} = Length × Width }}} \\ \\ [/tex]

On Substituting the required values, we get;

[tex]\\ \: \: \: \: \dashrightarrow \: \: \: \: \sf (x)(x + 7) = 744 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf {x}^{2} + 7x = 744 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf {x}^{2} + 7x - 744 = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf {x}^{2} + 31x - 24x - 744 = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf x(x + 31) - 24 (x + 31) = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf (x + 31)(x - 24) = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf x = 24 \: or \: - 31 \\ \\ [/tex]

As we know that width of the rectangle can't be negative. So x = 24

Hence,

  • Width of rectangle = x = 24 yards
  • Length of the rectangle = x + 7 = 31 yards

[tex] \therefore[/tex]Length of rectangle is 31 yards and Width is 24 yards.

ACCESS MORE