Answer:
Given:
Solution:
Let's assume Width of rectangle be x and Length of rectangle be x + 7 respectively.
Using formula
[tex] \\ \: \: \: \: \pink{ \dashrightarrow \: \: \: \: \sf { \underbrace{Area_{(Rectangle)} = Length × Width }}} \\ \\ [/tex]
On Substituting the required values, we get;
[tex]\\ \: \: \: \: \dashrightarrow \: \: \: \: \sf (x)(x + 7) = 744 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf {x}^{2} + 7x = 744 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf {x}^{2} + 7x - 744 = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf {x}^{2} + 31x - 24x - 744 = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf x(x + 31) - 24 (x + 31) = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf (x + 31)(x - 24) = 0 \\ \\ \\ \: \: \: \: \dashrightarrow \: \: \: \: \sf x = 24 \: or \: - 31 \\ \\ [/tex]
As we know that width of the rectangle can't be negative. So x = 24
Hence,
[tex] \therefore[/tex]Length of rectangle is 31 yards and Width is 24 yards.