Answer:
m∠R = 72°; m∠U = 65°
Step-by-step explanation:
We know that in any quadrilateral, the total sum of the angles will always add up to 360°.
For number 26, we can use this equation to find x and m∠R:[tex]90+98+12x+4+10x-8=360\\(90+98+4-8)+(12x+10x)=360\\184+22x=360\\22x=176\\x=8[/tex]
m∠R = 10 (8) - 8 = 80 - 8 = 72°
For number 28, we can use this equation to find x and m∠U
[tex]96+88+11x+1+7x-5=360\\(96+88+1-5)+(11x+7x)=360\\180+18x=360\\18x=180\\x=10[/tex]
m∠U = 7 (10) - 5 = 70 - 5 = 65°