NO LINKS!! PART 3. Please help me with these graphs
![NO LINKS PART 3 Please help me with these graphs class=](https://us-static.z-dn.net/files/d16/faf10dc8c02db66fa07063a5fe9fc0da.jpg)
Answer:
[tex]\textsf{13)} \quad y=(x+5)^2+4[/tex]
[tex]\textsf{14)} \quad y=-\dfrac{1}{2}(x-2)^2-3[/tex]
Step-by-step explanation:
Vertex form of a parabola:
[tex]y=a(x-h)^2+k[/tex] where (h, k) is the vertex
From inspection of the graph, the vertex is (-5, 4)
[tex]\implies y=a(x+5)^2+4[/tex]
To find [tex]a[/tex], substitute the coordinates of a point on the curve into the equation.
Using point (-4, 5):
[tex]\implies a(-4+5)^2+4=5[/tex]
[tex]\implies a(1)^2+4=5[/tex]
[tex]\implies a+4=5[/tex]
[tex]\implies a=1[/tex]
Therefore, the equation of the parabola in vertex form is:
[tex]y=(x+5)^2+4[/tex]
From inspection of the graph, the vertex is (2, -3)
[tex]\implies y=a(x-2)^2-3[/tex]
To find [tex]a[/tex], substitute the coordinates of a point on the curve into the equation.
Using point (0, -5):
[tex]\implies a(0-2)^2-3=-5[/tex]
[tex]\implies a(-2)^2-3=-5[/tex]
[tex]\implies 4a-3=-5[/tex]
[tex]\implies 4a=-2[/tex]
[tex]\implies a=-\dfrac{1}{2}[/tex]
Therefore, the equation of the parabola in vertex form is:
[tex]\implies y=-\dfrac{1}{2}(x-2)^2-3[/tex]
#1
Equation
As there is no y inetercept present and the function is same as general quadratic equation y=x^2 just change in coordinates a=1
Final equation
#2
y=a(x-2)²-3
Use (4,-5)
Equation