Respuesta :

Answer:

23.9 ft (nearest tenth)

Step-by-step explanation:

Use the sine trig ratio to find the length of the ramp.

[tex]\sf \sin(\theta)=\dfrac{O}{H}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • H is the hypotenuse (the side opposite the right angle)

Given:

  • [tex]\theta[/tex] = 4.8°
  • O = height of ramp = 2 ft
  • H = length of ramp

Substituting the given values into the formula and solving for H:

[tex]\implies \sf \sin(4.8^{\circ})=\dfrac{2}{H}[/tex]

[tex]\implies \sf H=\dfrac{2}{\sin(4.8^{\circ})}[/tex]

[tex]\implies \sf H=23.9\:ft\:(nearest\:tenth)[/tex]