Answer:
56 days
Explanation:
[tex]\sf Half \ Life : A = A_O \ x \ (\dfrac{1}{2} )^{\dfrac{t}{h} }[/tex]
where A is final amount, Ao is initial amount, t is time taken, h is half life
Here given:
initial amount: 400 millicuries
final amount: 3.125 millicuries
half life: 8 days
time taken: ?
Hence solve for time taken:
[tex]\sf \rightarrow A = A_O \ x \ (\dfrac{1}{2} )^{\dfrac{t}{h} }[/tex]
insert values given
[tex]\sf \rightarrow 3.125 = 400 \ x \ (\dfrac{1}{2} )^{\dfrac{t}{8} }[/tex]
divide both sides by 400
[tex]\sf \rightarrow (\dfrac{1}{2})^{\dfrac{t}{8}}=0.0078125[/tex]
apply exponent rule
[tex]\sf \rightarrow {\dfrac{t}{8}}=\dfrac{ln(0.0078125)}{ln(1/2)}[/tex]
simplify
[tex]\rightarrow \sf \dfrac{t}{8}=7[/tex]
multiply both sides by 8
[tex]\rightarrow \sf t = 56[/tex]