Step-by-step explanation:
Consider the LHS, after the 5th step, consider the RHS
[tex]2 \csc(2x) = \csc {}^{2} (x) \tan(x) [/tex]
[tex]2 \frac{1}{ \sin(2x) } = \csc {}^{2} (x) \tan(x) [/tex]
[tex]2 \times \frac{1}{2 \sin(x) \cos(x) } = \csc {}^{2} (x) \tan(x) [/tex]
[tex] \frac{1}{ \sin(x) \cos(x) } = \csc {}^{2} (x) \tan(x) [/tex]
[tex] \csc(x) \sec(x) = \csc {}^{2} (x) \tan(x) [/tex]
Consider the RHS
[tex] \csc(x) \sec(x) =( 1 + \cot {}^{2} (x) ( \tan(x)) [/tex]
[tex] \csc(x) \sec(x) = \tan(x) + \cot(x) [/tex]
[tex] \csc(x) \sec(x) = \frac{ \sin(x) }{ \cos(x) } + \frac{ \cos(x) }{ \sin(x) } [/tex]
[tex] \csc(x) \sec(x) = \frac{1}{ \sin(x) \cos(x) } [/tex]
[tex] \csc(x) \sec(x) = \csc(x) \sec(x) [/tex]