Respuesta :
Answer:
Approximately [tex]0.253\; {\rm J \cdot g^{-1} \cdot K^{-1}}[/tex] assuming no heat exchange between the mixture and the surroundings.
Explanation:
Consider an object of specific heat capacity [tex]c[/tex] and mass [tex]m[/tex]. Increasing the temperature of this object by [tex]\Delta T[/tex] would require [tex]Q = c\, m \, \Delta T[/tex].
Look up the specific heat of water: [tex]c(\text{water}) = 4.182\; {\rm J \cdot g^{-1} \cdot K^{-1}}[/tex].
It is given that the mass of the water in this mixture is [tex]m(\text{water}) = 1.00 \times 10^{2}\; {\rm g}[/tex].
Temperature change of the water: [tex]\Delta T(\text{water}) = (45 - 35)\; {\rm K} = 10\; {\rm K}[/tex].
Thus, the water in this mixture would have absorbed :
[tex]\begin{aligned}Q &= c\, m\, \Delta T \\ &= 4.182\; {\rm J \cdot g^{-1}\cdot K^{-1}} \\ &\quad \times 1.00 \times 10^{2}\; {\rm g} \times 10\; {\rm K} \\ &= 4.182 \times 10^{3}\; {\rm J}\end{aligned}[/tex].
Thus, the energy that water absorbed was: [tex]Q(\text{water}) = 4.182 \times 10^{3}\; {\rm J}[/tex].
Assuming that there was no heat exchange between the mixture and its surroundings. The energy that the water in this mixture absorbed, [tex]Q(\text{water})[/tex], would be the opposite of the energy that the metal in this mixture released.
Thus: [tex]Q(\text{metal}) = -Q(\text{water}) = -4.182 \times 10^{3}\; {\rm J}[/tex] (negative because the metal in this mixture released energy rather than absorbing energy.)
Mass of the metal in this mixture: [tex]m(\text{metal}) = 3 \times 1.00 \times 10^{2}\; {\rm g} = 3.00 \times 10^{2}\; {\rm g}[/tex].
Temperature change of the metal in this mixture: [tex]\Delta T(\text{metal}) = (100 - 45)\; {\rm K} = 55\; {\rm K}[/tex].
Rearrange the equation [tex]Q = c\, m \, \Delta T[/tex] to obtain an expression for the specific heat capacity: [tex]c = Q / (m\, \Delta T)[/tex]. The (average) specific heat capacity of the metal pieces in this mixture would be:
[tex]\begin{aligned}c &= \frac{Q}{m\, \Delta T} \\ &= \frac{-4.182 \times 10^{3}\; {\rm J}}{3.00 \times 10^{2}\; {\rm g} \times (-55\; {\rm K})} \\ &\approx 0.253\; {\rm J \cdot g^{-1} \cdot K^{-1}}\end{aligned}[/tex].