Respuesta :

Answer:

cosΘ = [tex]\frac{\sqrt{3} }{2}[/tex]

Step-by-step explanation:

sin²Θ + cos²Θ = 1 ( subtract sin²Θ from both sides )

cos²Θ = 1 - sin²Θ ( take square root of both sides )

cosΘ = ± [tex]\sqrt{1-sin^20}[/tex]

       = ± [tex]\sqrt{1-(\frac{1}{2})^2 }[/tex]

       = ± [tex]\sqrt{1-\frac{1}{4} }[/tex]

      = ± [tex]\sqrt{\frac{3}{4} }[/tex]

     = ± [tex]\frac{\sqrt{3} }{2}[/tex]

since 0° < Θ < 90° , then

cosΘ = [tex]\frac{\sqrt{3} }{2}[/tex]

ACCESS MORE