Answer:
[tex]||\overrightarrow{v}||\approx14.64[/tex]
Step-by-step explanation:
The magnitude of a vector [tex]\displaystyle \overrightarrow{v}=\langle x,y\rangle[/tex] is [tex]||\overrightarrow{v}||=\sqrt{x^2+y^2}[/tex], which essentially describes the length of the vector itself between the initial and terminal points:
[tex]||\overrightarrow{v}||=\sqrt{x^2+y^2}\\\\||\overrightarrow{v}||=\sqrt{(10.5)^2+(10.2)^2}\\\\||\overrightarrow{v}||=\sqrt{110.25+104.04}\\\\||\overrightarrow{v}||=\sqrt{214.29}\\\\||\overrightarrow{v}||\approx14.64[/tex]