Respuesta :
The value of the given expression in terms of s will be [(s + 0.602)/3].
What is a logarithm?
Exponents can also be written as logarithms. A number base logarithm is similar to some other number. It is the exact inverse of the exponent expression.
If [tex]\log(16) = s[/tex]
Then the value of the given expression in terms of s is given below.
[tex]\dfrac{2}{3} \times \log(6400) - \dfrac{1}{3} \times \log(1600)[/tex]
We know the property of the logarithm.
[tex]\log 100 = 2[/tex]
Then we have
[tex]\rm \rightarrow \dfrac{2}{3} \times \log(6400) - \dfrac{1}{3} \times \log(1600)\\\\\\\rightarrow \dfrac{2}{3} \times ( \log 16 + \log 4 + \log 100 ) - \dfrac{1}{3} \times (\log 16 + \log 100)\\\\\\\rightarrow \dfrac{2}{3} \times (s + 0.602+2) - \dfrac{1}{3} \times (s + 2)\\\\\\\rightarrow \dfrac{2}{3} \times (s + 2.602 ) - \dfrac{1}{3} \times (s + 2)\\\\\\\rightarrow \dfrac{2 (s + 2.602) - (s - 2)}{3} \\\\\\\rightarrow \dfrac{s + 0.602}{3}[/tex]
More about the logarithm link is given below.
https://brainly.com/question/7302008
#SPJ1