Respuesta :
Let
[tex]f(x,y)=2x^2+3y^2-4x-2[/tex]
[tex]g(x,y)=x^2+y^2-16[/tex]
so that the Lagrangian is
[tex]L(x,y,\lambda)=f(x,y)-\lambda g(x,y)=(2-\lambda)x^2+(3-\lambda)y^2-4x-2+16\lambda[/tex]
You have
[tex]\begin{cases}L_x=-2x\lambda+4x-4=0\\L_y=6y-2y\lambda=0\\L_\lambda=16-x^2-y^2=0\end{cases}[/tex]
Solving for [tex](x,y)[/tex], you find four potential critical points, each giving values of [tex]f(x,y)[/tex] listed below:
[tex](-4,0)\implies f(-4,0)=46[/tex]
[tex](-2,-2\sqrt3)\implies f(-2,-2\sqrt3)=50[/tex]
[tex](-2,2\sqrt3)\implies f(-2,2\sqrt3)=50[/tex]
[tex](4,0)\implies f(4,0)=14[/tex]
Before you choose any of these, keep in mind that [tex]f(x,y)[/tex] is not a plane, so you need to also check for any possible critical points within the disk [tex]x^2+y^2\le16[/tex].
[tex]\nabla f(x,y)=\left\langle4x-4,6y\right\rangle[/tex]
The gradient is zero when [tex]x=1[/tex] and [tex]y=0[/tex]. At this point, you have [tex]f(1,0)=-4[/tex].
So, there are two maxima, both 50, and one minimum, -4.
[tex]f(x,y)=2x^2+3y^2-4x-2[/tex]
[tex]g(x,y)=x^2+y^2-16[/tex]
so that the Lagrangian is
[tex]L(x,y,\lambda)=f(x,y)-\lambda g(x,y)=(2-\lambda)x^2+(3-\lambda)y^2-4x-2+16\lambda[/tex]
You have
[tex]\begin{cases}L_x=-2x\lambda+4x-4=0\\L_y=6y-2y\lambda=0\\L_\lambda=16-x^2-y^2=0\end{cases}[/tex]
Solving for [tex](x,y)[/tex], you find four potential critical points, each giving values of [tex]f(x,y)[/tex] listed below:
[tex](-4,0)\implies f(-4,0)=46[/tex]
[tex](-2,-2\sqrt3)\implies f(-2,-2\sqrt3)=50[/tex]
[tex](-2,2\sqrt3)\implies f(-2,2\sqrt3)=50[/tex]
[tex](4,0)\implies f(4,0)=14[/tex]
Before you choose any of these, keep in mind that [tex]f(x,y)[/tex] is not a plane, so you need to also check for any possible critical points within the disk [tex]x^2+y^2\le16[/tex].
[tex]\nabla f(x,y)=\left\langle4x-4,6y\right\rangle[/tex]
The gradient is zero when [tex]x=1[/tex] and [tex]y=0[/tex]. At this point, you have [tex]f(1,0)=-4[/tex].
So, there are two maxima, both 50, and one minimum, -4.
The extreme values of a function are the minimum and the maximum values of the function.
The minimum and the maximum values of f are: -4 and 46, respectively.
The given parameters are:
[tex]\mathbf{f(x,y) = 2x^2 + 3y^2 - 4x - 2}[/tex]
[tex]\mathbf{x^2 + y^2 \le 16}[/tex]
Find the gradient of F(x,y).
[tex]\mathbf{f_x(x) = 4x - 4}[/tex]
[tex]\mathbf{f_y(y) = 6y}[/tex]
Set to 0, to solve for x and y
[tex]\mathbf{4x - 4 = 0}[/tex]
[tex]\mathbf{4x = 4}[/tex]
[tex]\mathbf{x = 1}[/tex]
[tex]\mathbf{6y = 0}[/tex]
[tex]\mathbf{y = 0}[/tex]
So, the critical points are:
[tex]\mathbf{(x,y) = (1,0)}[/tex]
Calculate the gradients of [tex]\mathbf{x^2 + y^2 \le 16}[/tex]
[tex]\mathbf{g_x = 2x}[/tex]
[tex]\mathbf{g_y = 2y}[/tex]
Equate the gradients as follows
[tex]\mathbf{f_x(x) = \lambda g_x(x)}[/tex]
[tex]\mathbf{f_y(y) = \lambda g_y(y)}[/tex]
So, we have:
[tex]\mathbf{4x - 2 = \lambda \cdot 2x}[/tex]
[tex]\mathbf{6y = \lambda \cdot 0}[/tex]
[tex]\mathbf{6y = 0}[/tex]
Divide both sides by 6
[tex]\mathbf{y = 0}[/tex]
Substitute [tex]\mathbf{y = 0}[/tex] in [tex]\mathbf{x^2 + y^2 = 16}[/tex]
[tex]\mathbf{x^2 + 0^2 = 16}[/tex]
[tex]\mathbf{x^2 = 16}[/tex]
Take square roots
[tex]\mathbf{x = \pm4}[/tex]
So, we have:
[tex]\mathbf{(x,y) = \{(1,0)(4,0)(-4,0)\}}[/tex]
Substitute these values in [tex]\mathbf{f(x,y) = 2x^2 + 3y^2 - 4x - 2}[/tex]
[tex]\mathbf{f(1,0) = 2(1)^2 + 3(0)^2 - 4(1) - 2 =-4}[/tex]
[tex]\mathbf{f(4,0) = 2(4)^2 + 3(0)^2 - 4(4) - 2 =14}[/tex]
[tex]\mathbf{f(-4,0) = 2(-4)^2 + 3(0)^2 - 4(-4) - 2 = 46}[/tex]
Hence, the minimum and the maximum values of f are: -4 and 46, respectively.
Read more about extreme values at:
brainly.com/question/1286349
