could i have some quick quick help?
![could i have some quick quick help class=](https://us-static.z-dn.net/files/d54/2fb5a568cd49c4a86a3fbf499052a0d7.png)
Turn over into vertex form
Solving
Open brackets
Accurating
Compare to Vertex form y=a(x-h)²+k
Vertex
Max profit is $897.5
Answer:
$7.50
Step-by-step explanation:
Completing the square formula
[tex]\begin{aligned}y & =ax^2+bx+c\\& =a\left(x^2+\dfrac{b}{a}x\right)+c\\\\& =a\left(x^2+\dfrac{b}{a}x+\left(\dfrac{b}{2a}\right)^2\right)+c-a\left(\dfrac{b}{2a}\right)^2\\\\& =a\left(x-\left(-\dfrac{b}{2a}\right)\right)^2+c-\dfrac{b^2}{4a}\end{aligned}[/tex]
[tex]\begin{aligned}P & =-30t^2+450t-790\\& =-30\left(t^2+\dfrac{450}{-30}t\right)-790\\\\& =-30\left(t^2+\dfrac{450}{-30}t+\left(\dfrac{450}{2(-30)}\right)^2\right)-790-(-30)\left(\dfrac{450}{2(-30)}\right)^2\\\\& =-30\left(t-\left(-\dfrac{450}{2(-30)}\right)\right)^2-790-\dfrac{450^2}{4(-30)}\\\\& =-30(t-7.5)^2+897.5\end{aligned}[/tex]
Therefore, the vertex is (7.5, 897.5)
So the ticket price that maximizes daily profit is the x-value of the vertex: $7.50