Which expression is equal to (screenshot)
![Which expression is equal to screenshot class=](https://us-static.z-dn.net/files/d5e/fdc5579fd9badedd7a85a3774369282a.png)
Answer:
D. 6x + 4 / x² + 5x
Step-by-step explanation:
Dividing a fraction is same as multiplying its inverse.
Therefore,
Answer:
[tex]\textsf{D.} \quad \dfrac{6x+4}{x^2+5}[/tex]
Step-by-step explanation:
When dividing fractions, multiply the first fraction by the reciprocal of the second fraction:
[tex]\begin{aligned}\left(\dfrac{3x+2}{4x}\right) \div \left(\dfrac{x+5}{8}\right) & =\left(\dfrac{3x+2}{4x}\right) \times \left(\dfrac{8}{x+5}\right)\\\\& = \dfrac{(3x+2) \times 8}{4x \times (x+5)}\\\\& = \dfrac{8(3x+2)}{4x(x+5)}\\\\& = \dfrac{2(3x+2)}{x(x+5)}\\\\& = \dfrac{6x+4}{x^2+5}\\\end{aligned}[/tex]