Please explain, too! Thank you :)
![Please explain too Thank you class=](https://us-static.z-dn.net/files/da4/f48aeda30244f4cd91d928377356f4bd.jpg)
Answer:
∠POS = 128°
Step-by-step explanation:
Angles on a straight line always add up to 180°
Therefore:
∠POS + ∠POQ = 180° (as they are the angles on line SOQ)
∠POS + 52° = 180°
∠POS = 180° - 52°
∠POS = 128°
[tex]\huge{\color{magenta}{\fbox{\textsf{\textbf{Answer}}}}}[/tex]
To find :-
The value of ∠POS
Given :-
∠POQ = 52°
Solution :-
The ∠POQ + ∠POS lies on same line SOQ. So they are linear pair and linear pair angle forms sum of 180°.
∠POS + ∠POQ = 180° {linear pair}
∠POS + 52° = 180°
∠POS = 180° - 52°
∠POS = 128°
Result :-
The angle ∠POS is 128°.