Which equation can be solved by using this system of equations? startlayout enlarged left-brace 1st row y = 3 x superscript 5 baseline minus 5 x cubed 2 x squared minus 10 x 4 2nd row y = 4 x superscript 4 baseline 6 x cubed minus 11 endlayout 3 x superscript 5 baseline minus 5 x cubed 2 x squared minus 10 x 4 = 0 3 x superscript 5 baseline minus 5 x cubed 2 x squared minus 10 x 4 = 4 x superscript 4 baseline 6 x cubed minus 11 3 x superscript 5 baseline 4 x superscript 4 baseline x cubed 2 x squared minus 10 x minus 7 = 0 4 x superscript 4 baseline 6 x cubed minus 11 = 0

Respuesta :

Lanuel

An equation which can be used to solve the given system of equations is 3x⁵ - 5x³ + 2x² - 10x + 4 = 4x⁴ + 6x³ - 11.

Given the following data:

y = 3x⁵ - 5x³ + 2x² - 10x + 4

y = 4x⁴ + 6x³ - 11

What is a system of equations?

A system of equations can be defined an algebraic equation that only has two (2) variables and can be solved simultaneoulsy.

Equating the given equations, we have:

y = y

3x⁵ - 5x³ + 2x² - 10x + 4 = 4x⁴ + 6x³ - 11

3x⁵ - 5x³ + 2x² - 10x + 4 - (4x⁴ + 6x³ - 11) = 0

3x⁵ - 5x³ + 2x² - 10x + 4 - 4x⁴ - 6x³ + 11 = 0

3x⁵ - 5x³ + 2x² - 10x + 4 - 4x⁴ - 6x³ + 11 = 0

3x⁵ - 4x⁴ - 11x³ + 2x² - 10x + 15 = 0

Read more on equations here: brainly.com/question/13170908

RELAXING NOICE
Relax