Respuesta :

Just find the vertex and then compare with graph

#a

  • y=2x²-8
  • y=2(x-0)²-8

Parabola opening upwards

  • Vertex at (0,-8)

Graph 3

#2

  • y=(x+3)²+0

Vertex at (-3,0)

Graph IV

#3

  • y=-2(x-4)²+8

Parabola opening downwards as a is -ve

Graph I

#4

One graph is left

  • Graph Ii

Answer:

a)  graph iii)

b)  graph iv)

c)  graph i)

d)  graph ii)

Step-by-step explanation:

Vertex form of a quadratic equation:  [tex]y = a(x - h)^2 + k[/tex]

where [tex](h, k)[/tex] is the vertex (turning point)

First, determine the vertices of the parabolas by inspection of the graphs:

  • Graph i) → vertex = (4, 8)
  • Graph ii) → vertex = (3, -8)
  • Graph iii) → vertex = (0, -8)
  • Graph iv) → vertex = (-3, 0)

Next, write each given equation in vertex form and compare to the vertices above.

[tex]\textsf{a)}\quad y=2x^2-8[/tex]

[tex]\textsf{Vertex form}: \quad y=2(x-0)^2-8[/tex]

⇒ Vertex = (0, -8)

Therefore, graph iii)

[tex]\textsf{b)} \quad y=(x+3)^2[/tex]

[tex]\textsf{Vertex form}: \quad y=(x+3)^2+0[/tex]

⇒ Vertex = (-3, 0)

Therefore, graph iv)

[tex]\textsf{c)} \quad y=-2|x-4|^2+8[/tex]

[tex]\textsf{Vertex form}: \quad y=-2|x-4|^2+8[/tex]

⇒ Vertex = (4, 8)

Therefore, graph i)

[tex]\textsf{d)} \quad y=(x-3)^2-8[/tex]

[tex]\textsf{Vertex form}: \quad y=(x-3)^2-8[/tex]

⇒ Vertex = (3, -8)

Therefore, graph ii)

ACCESS MORE
EDU ACCESS