Let a be the first term in the sequence, and d the common difference between consecutive terms. If aₙ denotes the n-th term in the sequence, then
a₁ = a
a₂ = a₁ + d = a + d
a₃ = a₂ + d = a + 2d
a₄ = a₃ + d = a + 3d
and so on, up to the n-th term
aₙ = a + (n - 1) d
The sum of the first 10 terms is 100, and so
[tex]\displaystyle \sum_{n=1}^{10} a_n = 100 \\ \sum_{n=1}^{10} (a + (n-1)d) = 100 \\ (a-d) \sum_{n=1}^{10} 1 + d \sum_{n=1}^{10} n = 100 \\ 10a+45d = 100[/tex]
where we use the well-known sum formulas,
[tex]\displaystyle \sum_{n=1}^N 1 = 1 + 1 + 1 + \cdots + 1 = N[/tex]
[tex]\displaystyle \sum_{n=1}^N n = 1 + 2 + 3 + \cdots + N = \frac{N(N+1)}2[/tex]
The sum of the next 10 terms is 300, so
[tex]\displaystyle \sum_{n=11}^{20} a_n = 300 \\ (a-d) \sum_{n=11}^{20} 1 + d \sum_{n=11}^{20} n = 300 \\ (a-d) \left(\sum_{n=1}^{20} 1 - \sum_{n=1}^{10} 1\right) 1 + d \left(\sum_{n=1}^{20} n - \sum_{n=1}^{10} n\right) = 300 \\ 10a+145d = 300[/tex]
Solve for a and d. Eliminating a gives
(10a + 145d) - (10a + 45d) = 300 - 100
100d = 200
d = 2
and solving for a gives
10a + 145×2 = 300
10a = 10
a = 1
So, the given sequence is simply the sequence of positive odd integers,
{1, 3, 5, 7, 9, …}
given recursively by the relation
[tex]\begin{cases}a_1 = 1 \\ a_n = a_{n-1} + 2 & \text{for }n>1\end{cases}[/tex]
and explicitly by
[tex]a_n = 1 + 2(n-1) = 2n - 1[/tex]
for n ≥ 1.